Feature selection using Fuzzy Entropy measures with Yu ' s Similarity measure

نویسندگان

  • Matti Heiliö
  • Tuomo Kauranne
چکیده

In this study, feature selection in classi cation based problems is highlighted. The role of feature selection methods is to select important features by discarding redundant and irrelevant features in the data set, we investigated this case by using fuzzy entropy measures. We developed fuzzy entropy based feature selection method using Yu's similarity and test this using similarity classi er. As the similarity classi er we used Yu's similarity, we tested our similarity on the real world data set which is dermatological data set. By performing feature selection based on fuzzy entropy measures before classi cation on our data set the empirical results were very promising, the highest classication accuracy of 98.83% was achieved when testing our similarity measure to the data set. The achieved results were then compared with some other results previously obtained using di erent similarity classiers, the obtained results show better accuracy than the one achieved before. The used methods helped to reduce the dimensionality of the used data set, to speed up the computation time of a learning algorithm and therefore have simpli ed the classi cation task.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HESITANT FUZZY INFORMATION MEASURES DERIVED FROM T-NORMS AND S-NORMS

In this contribution, we first introduce the concept of metrical T-norm-based similarity measure for hesitant fuzzy sets (HFSs) {by using the concept of T-norm-based distance measure}. Then,the relationship of the proposed {metrical T-norm-based} similarity {measures} with the {other kind of information measure, called the metrical T-norm-based} entropy measure {is} discussed. The main feature ...

متن کامل

INFORMATION MEASURES BASED TOPSIS METHOD FOR MULTICRITERIA DECISION MAKING PROBLEM IN INTUITIONISTIC FUZZY ENVIRONMENT

In the fuzzy set theory, information  measures play a paramount role in several areas such as decision making, pattern recognition etc. In this paper, similarity measure based on cosine function and entropy measures based on logarithmic function for IFSs are proposed. Comparisons of proposed similarity and entropy measures with the existing ones are listed. Numerical results limpidly betoken th...

متن کامل

SHAPLEY FUNCTION BASED INTERVAL-VALUED INTUITIONISTIC FUZZY VIKOR TECHNIQUE FOR CORRELATIVE MULTI-CRITERIA DECISION MAKING PROBLEMS

Interval-valued intuitionistic fuzzy set (IVIFS) has developed to cope with the uncertainty of imprecise human thinking. In the present communication, new entropy and similarity measures for IVIFSs based on exponential function are presented and compared with the existing measures. Numerical results reveal that the proposed information measures attain the higher association with the existing me...

متن کامل

Uncertainty measures for fuzzy relations and their applications

Relations and relation matrices are important concepts in set theory and intelligent computation. Some general uncertainty measures for fuzzy relations are proposed by generalizing Shannon’s information entropy. Then, the proposed measures are used to calculate the diversity quantity of multiple classifier systems and the granularity of granulated problem spaces, respectively. As a diversity me...

متن کامل

Information Quantification Application to Management with Fuzzy Entropy and Similarity Measure

Verification of efficiency in data management fuzzy entropy and similarity measure were discussed and verified by applying reliable data selection problem and numerical data similarity evaluation. In order to calculate the certainty or uncertainty fuzzy entropy and similarity measure are designed and proved. Designed fuzzy entropy and similarity are considered as dissimilarity measure and simil...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012